Hadoop LogoHadoop представляет собой платформу для построения приложений, способных обрабатывать огромные объемы данных. Система основывается на распределенном подходе к вычислениям и хранению информации, основными ее особенностями являются:

 

  • Масштабируемость: с помощью Hadoop возможно надежное хранение и обработка огромных объемов данных, которые могут измеряться петабайтами;
  • Экономичность: информация и вычисления распределяются по кластеру, построенному на самом обыкновенном оборудовании. Такой кластер может состоять из тысяч узлов;
  • Эффективность: распределение данных позволяет выполнять их обработку параллельно на множестве компьютеров, что существенно ускоряет этот процесс;
  • Надежность: при хранении данных возможно предоставление избыточности, благодаря хранению нескольких копий. Такой подход позволяет гарантировать отсутствие потерь информации в случае сбоев в работе системы;
  • Кроссплатформенность: так как основным языком программирования, используемым в этой системе является Java, развернуть ее можно на базе любой операционной системы, имеющей JVM.

 

 

 

HDFS

 

В основе всей системы лежит распределенная файловая система под незамысловатым названием Hadoop Distributed File System. Представляет она собой вполне стандартную распределенную файловую систему, но все же она обладает рядом особенностей:

 

  • Устойчивость к сбоям, разработчики рассматривали сбои в оборудовании скорее как норму, чем как исключение;
  • Приспособленность к развертке на самом обыкновенном ненадежном оборудовании;
  • Предоставление высокоскоростного потокового доступа ко всем данным;
  • Настроена для работы с большими файлами и наборами файлов;
  • Простая модель работы с данными: один раз записали — много раз прочли;
  • Следование принципу: переместить вычисления проще, чем переместить данные;

 

Архитектура HDFS

 

Проще всего ее демонстрирует схема, позаимствованная с официального сайта проекта и переведенная мной на руский:
Архитектура HDFS

 

Действующие лица:

 

Namenode
Этот компонент системы осуществляет всю работу с метаданными. Он должен быть запущен только на одном компьютере в кластере. Именно он управляет размещением информации и доступом ко всем данным, расположенным на ресурсах кластера. Сами данные проходят с остальных машин кластера к клиенту мимо него.
Datanode
На всех остальных компьютерах системы работает именно этот компонент. Он располагает сами блоки данных в локальной файловой системе для последующей передачи или обработки их по запросу клиента. Группы узлов данных принято называть Rack, они используются, например, в схемах репликации данных.
Клиент
Просто приложение или пользователь, работающий с файловой системой. В его роли может выступать практически что угодно.

 

Пространство имен HDFS имеет классическую иерархическую структуру: пользователи и приложения имеют возможность создавать директории и файлы. Файлы хранятся в виде блоков данных произвольной (но одинаковой, за исключением последнего; по-умолчанию 64 mb) длины, размещенных на Datanode'ах. Для обеспечения отказоустойчивости блоки хранятся в нескольких экземплярах на разных узлах, имеется возможность настройки количества копий и алгоритма их распределения по системе. Удаление файлов происходит не сразу, а через какое-то время после соответствующего запроса, так как после получения запроса файл перемещается в директорию /trash и хранится там определенный период времени на случай если пользователь или приложение передумают о своем решении. В этом случае информацию можно будет восстановить, в противном случае — физически удалить.

 

Для обнаружения возникновения каких-либо неисправностей, Datanode периодически отправляют Namenode'у сигналы о своей работоспособности. При прекращении получения таких сигналов от одного из узлов Namenode помечает его как «мертвый», и прекращает какой-либо с ним взаимодействие до возвращения его работоспособности. Данные, хранившиеся на «умершем» узле реплицируются дополнительный раз из оставшихся «в живых» копий и система продолжает свое функционирование как ни в чем не бывало.

 

Все коммуникации между компонентами файловой системы проходят по специальным протоколам, основывающимся на стандартном TCP/IP. Клиенты работают с Namenode с помощью так называемого ClientProtocol, а передача данных происходит по DatanodeProtocol, оба они обернуты в Remote Procedure Call (RPC).

 

Система предоставляет несколько интерфейсов, среди которых командная оболочка DFSShell, набор ПО для администрирования DFSAdmin, а также простой, но эффективный веб-интерфейс. Помимо этого существуют несколько API для языков программирования: Java API, C pipeline, WebDAV и так далее.

 

MapReduce

 

Помимо файловой системы, Hadoop включает в себя framework для проведения масштабных вычислений, обрабатывающих огромные объемы данных. Каждое такое вычисление называется Job (задание) и состоит оно, как видно из названия, из двух этапов:

 

Map
Целью этого этапа является представление произвольных данных (на практике чаще всего просто пары ключ-значение) в виде промежуточных пар ключ-значение. Результаты сортируются и групируются по ключу и передаются на следующий этап.
Reduce
Полученные после map значения используются для финального вычисления требуемых данных. Практические любые данные могут быть получены таким образом, все зависит от требований и функционала приложения.

 

Задания выполняются, подобно файловой системе, на всех машинах в кластере (чаще всего одних и тех же). Одна из них выполняет роль управления работой остальных — JobTracker, остальные же ее бесприкословно слушаются — TaskTracker. В задачи JobTracker'а входит составление расписания выполняемых работ, наблюдение за ходом выполнения, и перераспределение в случае возникновения сбоев.

 

В общем случае каждое приложение, работающее с этим framework'ом, предоставляет методы для осуществления этапов map и reduce, а также указывает расположения входных и выходных данных. После получения этих данных JobTracker распределяет задание между остальными машинами и предоставляет клиенту полную информацию о ходе работ.

 

Помимо основных вычислений могут выполняться вспомогательные процессы, такие как составление отчетов о ходе работы, кэширование, сортировка и так далее.

 

HBase

 

HBase Logo
В рамках Hadoop доступна еще и система хранения данных, которую правда сложно назвать СУБД в традиционном смысле этого слова. Чаще проводят аналогии с проприетарной системой этого же плана от Google — BigTable.

 

HBase представляет собой распределенную систему хранения больших объемов данных. Подобно реляционным СУБД данные хранятся в виде таблиц, состоящих из строк и столбцов. И даже для доступа к ним предоставляется язык запросов HQL (как ни странно — Hadoop Query Language), отдаленно напоминающий более распространенный SQL. Помимо этого предоставляется итерирующмй интерфейс для сканирования наборов строк.

 

Одной из основных особенностей хранения данных в HBase является возможность наличия нескольких значений, соответствующих одной комбинации таблица-строка-столбец, для их различения используется информация о времени добавления записи. На концептуальном уровне таблицы обычно представляют как набор строк, но физически же они хранятся по столбцам, достаточно важный факт, который стоит учитывать при разработки схемы хранения данных. Пустые ячейки не отображаются каким-либо образом физически в хранимых данных, они просто отсутствуют. Существуют конечно и другие нюансы, но я постарался упомянуть лишь основные.

 

HQL очень прост по своей сути, если Вы уже знаете SQL, то для изучения его Вам понадобится лишь просмотреть по диагонали коротенький вывод команды help;, занимающий всего пару экранов в консоли. Все те же SELECT, INSERT, UPDATE, DROP и так далее, лишь со слегка измененным синтаксисом.

 

Помимо обычно командной оболочки HBase Shell, для работы с HBase также предоставлено несколько API для различных языков программирования: Java, Jython, REST и Thrift.

 

Заключение

 

Hadoop является отличным решением для построения высоконагруженных приложений, которое уже активно используется множеством интернет-проектов. В последующих постах на эту тему я постараюсь описать процесс развертывания этой системы и написания приложений, работающих по принципу MapReduce. Не пропустить момент их публикации Вам может помочь подписка на RSS-ленту.

Вверх